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Abstract
In this paper we describe the integration of machine learning (ML) techniques into the frame-
work of Markowitz’s portfolio selection and show how they can help advance the robust
mathematical strategies necessary for modern financial markets. By combining traditional
econometrics with cutting-edge MLmethodologies, we show how to enhance portfolio man-
agement processes including alpha generation, risk management, and optimization of risk
metrics like conditional value at risk. ML’s capacity to handle vast and complex datasets
allows for more dynamic and informed decision-making in portfolio construction. Moreover,
we discuss the practical applications of these techniques in real-world portfolio management,
highlighting both the potential enhancements and the challenges faced by portfolio managers
in implementing ML strategies.
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1 Introduction

Harry Markowitz is among the individuals responsible for providing a rigorous quantitative
foundation for investment management in the 20th century. By marrying portfolio selection
to optimization and statistical theory, Markowitz provided a new path forward for investment
researchers seeking a robustmathematical approach to navigating financialmarkets. Hiswork
ultimately became one of the fundamental pillars of modern portfolio theory. The complexity
of today’s markets, with a seemingly infinite amount of data being generated at rapid speeds,
has required investors to look for newmathematical arrows to deploy in their methodological
quivers. Indeed, investors have recognized for some time that the methods of data science
and machine learning (ML) can be a valuable addition to their investment process (López de
Prado, 2022).

ML has become a fundamental tool in modern portfolio management by significantly
enhancing traditional approaches to alpha generation and risk management that previously
relied solely on econometric models − regression models, time-series models (autoregres-
sive integrated moving average (ARIMA) (Box& Jenkins, 1976), generalized autoregressive
conditional heteroscedasticity (GARCH) (Bollerslev, 1986), vector autoregression models
(VAR) (Sims (1972, 1980), and cointegration models. ML provides portfolio and risk man-
agers with more sophisticated ways to build frameworks for trading, portfolio construction,
stress testing, scenario analysis, and the optimization of risk metrics like conditional value
at risk (CVaR).1

ML originates fromwhat Breiman (2001a) calls the “algorithmic modeling culture” while
traditional econometrics and statistics come from the “data modeling culture”. The data
modeling culture has hitherto been the dominant culture in traditional statistical practice and
is primarily concerned with providing information about the relationships that exist between
input and response variables and assumes that the data are generated by a specific stochastic
process. In contrast, the algorithmic modeling culture assumes that the relationships between
input and response variables are essentially too complex to uncover, and consequently is
primarily concerned with devising methods to successfully predict responses from inputs.
ML thus provides a complimentary set of analytic tools for investment practitioners.

What is ML? Simply put, it is a field of study that combines the use of statistics and com-
puting to discover or impose order in complex data to enhance informed decision-making. It is
an inherently practical endeavor, just like finance, and so it is especially suited to investment
applications. ML comprises a family of computational techniques that facilitate the auto-
mated learning of patterns and the formation of predictions from data. Although there are
many types of ML frameworks and algorithms, they share the following three components:
(1) a method for extracting and representing the essential features of the data under consid-
eration; (2) a process and period of model training; and (3) an objective function derived
(“learned”) during the training period and applied to a test dataset (not used during training).
Furthermore, ML algorithms are generally designed to solve one of two types of problems:
a classification-type problem, in which the goal is to categorize data into different types, or
a regression-type problem, in which the goal is to predict a quantity for a variable given the
values for a set of predictor variables. Both types of problems are prevalent in finance, so
ML can be viewed as a natural extension to investment practitioners’ existing tool set.

The objective of this paper is to provide an overview of how practitioners are using ML
in portfolio and risk management including signal generation, feature selection, portfolio

1 See Simonian et. al (2018) and Simonian and Fabozzi (2019) for detailed arguments regarding the added
value of machine learning relative to traditional econometrics.
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construction and optimization, and stress testing.We conclude this surveywith the challenges
portfolio managers face in applying ML.

2 Signal generation

An investment signal is a piece of information or set of data points that can potentially inform
an investment decision. Investment signals can be derived from a variety of sources, such
as econometric or statistical models, ML models, news articles, company filings with the
Securities and Exchange Commission (SEC), economic indicators, and market sentiment.
Generally, signals can be classified as quantitative or qualitative. Data for quantitative signals
include historical pricemovements, economic indicators, and companyfinancial performance
measures. Qualitative signals include news events, management discussions in 10-K filings,
and market sentiment. In assessing qualitative signals, it is necessary to interpret and judge
the meaning of the signal. For example, in the case of market sentiment as determined by a
natural language processing (NLP) algorithm, the input is either positive, negative, or neutral.

The identification of signals is central to active portfolio management. Econometric tools
have long been used for that purpose. They include regression analysis (linear and logistic
regression analysis) and time-series analysis (e.g., ARIMA). ML methods for signal gen-
eration include (1) supervised learning algorithms (e.g., support vector machines,2 random
forecasts,3 (2) unsupervised learning algorithms (e.g., clustering methods such as k-means4

and hierarchical clustering5), (3) reinforcement learning6 (e.g., Q-learning,7 SARSA,8 deep
Q-networks,9 and policy gradient methods10), (4) neural networks and deep learning algo-
rithms (e.g., convolution neural networks and autoencoders,11 recurrent neural networks,12

and long short-term memory networks13).
Unsupervised learning algorithms include those encompassing clustering and dimension

reduction, inwhich the goal is to draw inferences and define hidden structures from input data.
Unsupervised algorithms are distinguished by the fact that the input data are not categorized
or classified. Rather, the algorithm is expected to provide a structure for the data. In contrast,

2 A description of support vector machines is provided by Cortes & Vapnik (1995) and Vapnik et al. (1997).
An application to portfolio construction/optimization is provided by Gupta, Mehlawat, and Mittal (2012) and
Silva (2024), portfolio rebalancing by Sahu and Kumar (2024), and risk management by Singh (2009).
3 See Breiman (2001b).
4 For a description of k-means methods and their application to portfolio construction, see Aslam, Bhuiyan,
and Zhang (2023).
5 See López de Prado (2016) and Raffinot (2018).
6 See Sood et al. (2023) for the application of reinforcement learning to portfolio management.
7 Seminal papers in the development ofQ-learning includeWatkins andDayan (1992), Tesauro (1995),Hasselt
(2010), Schulman, et. al (2015), Wang et. al (2016), and Ha and Schmidhuber (2018). For an application of
Q-Learning to portfolio management, see Gao et al. (2023).
8 For more background on the SARSA algorithm, see Rummery and Niranjan (1994) and Sutton and Barto
(1998).
9 For an application of deep Q networks to portfolio management, see Gao et al. (2023).
10 See Zheng, Jiang, and Su (2021) for a description of gradient policy methods and its application to portfolio
management.
11 For an application of convolution neural networks to portfolio management, see Gao et al. (2023).
12 For an application of the recurrent neural network algorithm to portfolio construction, see Cao et al. (2023).
13 This algorithm, developed by Hochreiter and Schmidhuber (1997), has been applied to portfolio optimiza-
tion by Martínez-Barbero, Cervelló-Royo, and Ribal (2024).
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supervised learning algorithms use input variables that are clearly defined. With supervised
learning, the goal is to produce rules and/or inferences that can be reliably applied to new
data, whether for classification or regression-type problems. Neural networks are motivated
by the functioning of the human brain. Their basic design consists of a collection of data
processors organized in layers, called neurons (or nodes). Information is processed via the
responses of neurons to external inputs. These responses are then passed on to the next
layer, eventually ending up as final output. Reinforcement learning is a branch of machine
learning which studies how agents learn to maximize rewards in specific environments. By
an “environment” we mean a specific state of the world, actions that an agent can take, and
rewards and punishments attached to specific actions. Reinforcement learning is based on
the idea that agents learn based on the pattern of rewards and punishments experienced in
previous states. As they learn these patterns, they can make more informed decisions in the
future.

While both econometric and ML models can be used for prediction, ML models are
typically focused on pattern recognition and prediction, while econometric models have
typically been geared toward providing statistical explanations of past economic and market
events.

Whatever typeofmodel oneuses, the signals it produces are supposed to be informationally
additive to an investment process. There are many ways of measuring signals’ informational
value. For example, a well-known statistical test is based on the idea of Granger causality
(GC) (Granger, 1969), which stipulates that for a given predictor x and target variable y we
can say that x Granger-causes y if:

(1) x temporally precedes y
(2) x provides more predictively useful information than a rival “naïve” predictor

One way of formally expressing (2) is P(Yt+1|Xt , Yt ) > P(Yt+1|Yt ), which can be
interpreted as saying that given a target variable Y , the probability of predicting its one-step-
ahead value Yt+1 is higher given temporally prior information about a predictor variable X
in addition to temporally prior information about Y alone.

ML also provides us with metrics to evaluate a signal or model’s predictive efficacy. The
majority are based on tests from statistical classification (analogous to type I and II tests
in hypothesis testing). Thus, they evaluate signals based on their ability to classify events
correctly. For example, a correct (true positive) classification could be to predict that an asset
produces a positive return in a future point in time (e.g., one month after the prediction is
made) and observe that the asset does in fact produce a positive return as predicted. Some
major measures of predictive accuracy are:

Precision = True Positives

True Positives + False Positives

A higher precision score indicates fewer false positives,meaning themodel ismore precise
in its positive predictions.

Recall = True Positives

True Positives + False Negatives

Higher recall scores imply that the model captures a larger proportion of actual positives.

F1 = 2 × Precision × Recall

Precision + Recall

A high precision at the expense of a low recall is undesirable, similar to a high recall at
the expense of a low precision. The F1 score is the harmonic mean of precision and recall.

123



Annals of Operations Research (2025) 346:319–340 323

It informs whether an algorithm has performed well on both measurements. F1 scores range
from 0 to 1.

Accuracy = True Positives + True Negatives

Total Samples

A higher accuracy score (closer to 1) suggests that the model makes fewer mistakes,
correctly predicting more instances.

In addition to the well-worn methods for testing signals, there are more novel approaches
that draw on both ML and traditional statistics. For example, Simonian (2020) introduces a
modular ML framework for model validation in which the output from one procedure serves
as the input to another procedure within a single validation framework. The framework uses
an econometric model in the first module to classify data in an economically intuitive way.
Proceeding modules apply data science techniques to evaluate the predictive characteristics
of the model components. It then applies the framework to the fundamental law of active
management (Grinold, 1989; Grinold and Kahn, 2000), a well-known formal characteriza-
tion of portfolio managers’ alpha generation process. In contrast to standard applications
of the law, in which it has been used to evaluate a manager’s existing active management
process, the framework recasts the law as ameans to test investment signals for their potential
use, individually or collectively, in a manager’s investment process. To illustrate how this
application works, an example is provided using the well-known Fama–French factors as test
signals.

3 Feature selection

Feature or factor selection is one of themost important aspects of building investmentmodels.
This is because the features that explain phenomena are often also the most likely candidates
for predictive signals. A popular regression-based analytical framework for feature selec-
tion is the least absolute shrinkage and selection operator (LASSO).14 LASSO provides a
methodology that can help portfolio managers or analysts both select variables for and miti-
gate against overfitting in (i.e., regularize) our models, to enhance their predictive accuracy
and interpretability. Within a regression framework, the objective of LASSO is to find the
best model by minimizing the squared errors between the portfolio returns Ri and a model
̂Ri fitted to explain portfolio returns. LASSO is described formally in the following manner:

argmin
β∈Rp

[

∑K

i=1

(

Ri − ̂Ri
)2

]

=
∑K

i=1

(

Ri − α −
∑P

j=1
β j Fi j

)2

+ λ
∑P

j=0

∣

∣β j
∣

∣ (1)

where Ri is the portfolio return, α i is an intercept, Fj , t are factors, and β i is a coefficient of
factor loadings that measures the sensitivity of the portfolio return to the factors. The regu-
larization term λ

∑P
j=0

∣

∣β j
∣

∣ penalizes the absolute values of the coefficients. The magnitude

of the penalty is controlled by the regularization parameter λ. When λ takes a value of zero,
we have the ordinary least squares (OLS) model. However, a sufficiently large value of λ

will force some of the coefficients β j to become zero, consequently excluding them from the
model.

There are many convenient and practical ways to use LASSO in the context of model
development. For example, when building a multi-asset model, there are typically numerous

14 Santosa and Symes (1986).
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potential factors that could provide some informational value. However, in keeping with the
goal of parsimony for factor models, it would be impractical to use a large set of factors, only
some of which would be the primary drivers of portfolio behavior. It would be much more
efficient to select a subset of a more expansive array of risk factors. To do this via LASSO,
one would simply have to select a large number of factors (say, 60), specify the final number
of factors the portfolio manager wants in the model (say, 8), and run the procedure described
above. Then LASSO will provide the subset of risk factors that have the most explanatory
and predictive power while simultaneously having the lowest correlation with one another.

Feng, Giglio, andXiu (2020) and Freyberger, Neuhierl, andWeber (2020) employ LASSO
to create data-driven combinations of stock return predictors from large sets of signals.
Similarly, Rapach et al. (2019) use LASSO to identify the most significant predictors and
create optimal combinations among a large set of industry and market returns. Aside from
LASSO,ML frameworks can also be used for feature selection. These include elastic nets, and
artificial neural networks (ANNs). ML methods that can capture both nonlinear patterns and
interaction between features are ANNs, support vector machines, and tree-based methods.
As noted by Bartram et al. (2021), ML methods can be used to identify potentially complex
nonlinear relationships and a large number of features. Rapach et al. (2013) use adaptive
elastic nets to explore the predictive ability of lagged US market returns on global indexes.

Gu et al. (2020) provide an example of the application of elastic nets to the selection and
combination of both fundamental and technical signals to predict stock returns. Messmer and
Audrino (2022) conclude that adaptive LASSO outperforms both OLS and LASSO when
used to select from a vast number of features. Kozak et al. (2019) adopt a shrinkage approach
to build a stochastic discount factor summarizing the joint explanatory power of a large set of
stock characteristics. As an alternative to these data-driven approaches, Bew et al. (2019) and
Papaioannou and Giamouridis (2020) consider expert predictions as model inputs instead of
stock characteristics.

Finally, we note that in addition to helping us with feature selection, manyML algorithms
such as random forests, can also tell us which features are the primary drivers of an asset
or portfolio performance. These relativized feature importance (RFI) values indicate the
importance of a factor in predicting asset or portfolio returns when compared to the other
factors in a set. Because RFI values sum to unity, they are naturally viewed as weights.
RFI values can thus plausibly be used to offer guidance in portfolio construction. More
generally, permutation feature importance methods such as mean decrease accuracy (MDA)
help identify the features responsible for the cross-validated performance (see López de Prado
(2018) and López de Prado (2020) for a discussion).

Aside from finding new features and signals, ML methods can also be used to make the
application of well-known signals more effective. For example, consider traditional factor
models, which are by now widespread in finance and form an integral part of investment
practice. The most common models in the investment industry are linear, a development that
is no doubt the result of their familiarity and relative simplicity. Linear models, however,
often fail to capture important information regarding asset behavior. Research by Simonian
and Wu et al (2019) however shows that ML algorithms such as random forests, can be used
to produce factor frameworks that improve upon more traditional models in terms of their
ability to account for nonlinearities and interaction effects among variables, as well as their
higher explanatory power.

Another example ofMLmethods being used to improve upon existing econometricmodels
is the development of ML-driven regime-switching models. The latter models have become
popular among academic researchers to analyze the interaction between financial assets and
the broader economy, especially the significant, at times abrupt, changes in behavior they
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undergo at specific points in time. Regime models range from the simple demarcations of
regimes based on a set of statistical characteristics (e.g., high/ low volatility regimes), to
models driven by sophisticated econometric theory, in which the transition from one regime
to another is assumed to follow a process of some type. Well-known models falling into the
latter category include those described by Hamilton (1989), Filardo (1994), Kim and Nel-
son (1998), and Guidolin and Timmermann (2007, 2008), among others. While well-known
among investors, regime models nevertheless have a long history of poor predictive per-
formance. As a more forecast-focused counterpoint to traditional regime-switching models,
Simonian and Wu (2019) use spectral clustering,15 a graph-theoretic approach to classifying
data, to implement a regime-based trading model. They show that their framework not only
produces predictively effective macro signals, but also classifies regimes in an economically
intuitive way. Yazdani (2020) further builds on this regime-related research.

Typically, signal generation involves more than one signal. Three often used ML tools
employed for multiple signal generation are regression trees, panel trees, and XGBoost
for capturing non-linearities and interactions of factors. An additional advantage is their
interpretability which is critical for ensuring legal and ethical compliance, transparency, and
insights into which input features are most predictive. Signal generation can be enhanced
by using NLP. These techniques can be employed to extract factors from unstructured data
such as earnings calls and financial reports. These are critical for dynamic asset allocation as
will be explained later for updating factors. Simonian and Wu (2019) also demonstrate, by
means of a simple example, how combining signals from more than one ML framework can
produce viable strategies. They present an example that combines signals produced from a
random forest algorithm with signals produced by another framework known as association
rule learning (Agrawal et. al, 1993) to build an equity sector rotation strategy. They further
show how investors can use ML-generated signals in combination with traditional statistical
signals (e.g., simple volatility measures) to enhance their investment strategies.

4 Portfolio optimization and construction

The Markowitz (1952) mean–variance optimization model revolutionized the way investors
approach portfolio construction. Markowitz’s insight was twofold. First, he cast the invest-
ment problem as an optimization problem, with its solution characterized by the efficient
frontier. Second, he developed an algorithm to estimate the efficient frontier, known as the
critical line algorithm.

While the model’s core principles are widely recognized, it is important to note that
despite its pioneering contributions, the Markowitz model faces several limitations. These
limitations primarily arise from the computational and data constraints of its time, as well as
its foundational assumptions. To understand why, consider an investment universe with N
assets, where the expected value of returns is represented by an arrayμ, and the covariance of
returns is represented bymatrix V .Wewould like tominimize the variance of a portfolio with
allocations ω, measured as ω′Vω, subject to achieving a target ω′a, where a characterizes
the optimal solution. In general terms, the problem can be stated as

min
ω

1

2
ω′Vω

15 The fundamental ideas behind spectral clustering were introduced in the seminal papers by Hall (1970),
Donath and Hoffman (1973), and Fiedler (1973). For a historical overview of spectral clustering, see Spielman
and Teng (2007).
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s.t. : ω′a = a

This problem can be expressed in Lagrangian form as

L[ω, λ] = 1

2
ω′Vω − λ(ω′a − a)

with first-order conditions

∂L[ω, λ]

∂ω
= Vω − λa

∂L[ω, λ]

∂λ
= ω′a − a

Setting the first-order (necessary) conditions to zero, we obtain that
Vω − λa = 0, ω = λV−1a, and ω′a = a′ω = a, λa′V−1a = a, λ = a

a′V−1a
, thus

ω∗ = a
V−1a

a′V−1a

The second-order (sufficient) condition confirms that this solution is the minimum of the
Lagrangian,

∣

∣

∣

∣

∣

∂L2[ω, λ]
∂ω2

∂L2[ω, λ]
∂ω∂λ

∂L2[ω, λ]
∂λ∂ω

∂L2[ω, λ]
∂λ2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

V ′ −a′
a 0

∣

∣

∣

∣

= a′a ≥ 0

The common approach to estimating ω∗ is to compute

ω̂∗ = a
̂V−1â

â′̂V−1â

where ̂V is the estimated V , and â is the estimated a. In general, replacing each variable
with its estimate will lead to unstable solutions, that is, solutions where a small change in the
inputs will cause extreme changes in ω̂∗. In particular, when the determinant of ̂V is relatively
small, the entries in ̂V−1 are large, and the solution ω̂∗ becomes extremely sensitive to even
small changes in â. This is problematic, because in many practical applications there are
material costs associated with the re-allocation from one solution to another. The next two
sections explain the major sources of Markowitz instability, and how the ML literature has
addressed them.

4.1 Noise-induced instability

Consider a matrix of independent and identically distributed (IID) random observations X ,
of size T × N , where the underlying process generating the observations has zero mean and
variance σ 2. The matrix C = T−1X ′X has eigenvalues λ that asymptotically converge (as
N→ + ∞ and T→ + ∞ with 1<T/N< + ∞) to the Marcenko-Pastur probability density
function (PDF),

f [λ] =
{

T
N

√
(λ+−λ)(λ−λ−)

2πλσ 2 i f λ ∈ [

λ−, λ+
]

0 i f λ /∈ [

λ−, λ+
]
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Fig. 1 A visualization of the Marcenko-Pastur theorem

where the maximum expected eigenvalue is λ+ = σ 2
(

1 +
√

N
T

)2

, and the minimum

expected eigenvalue is λ− = σ 2
(

1 −
√

N
T

)2

.When σ 2 = 1, thenC is the correlation matrix

associated with X .
Eigenvalues λ ∈ [

λ−, λ+
]

are consistent with random behavior due to the finite sample

size. Specifically, we can associate eigenvalues λ ∈ [

0, λ+
]

with estimation error. One prob-

lem is that in finance most eigenvalues fall under theMarcenko-Pastur distribution,16 and can
be considered insignificant. The implication is that neither C−1 nor V−1 can be estimated
robustly. Accordingly, solutions are only optimal in-sample, not out-of-sample (Fig. 1).

Ledoit and Wolf (2004a, 2004b) introduced a popular method to shrink a numerically
ill-conditioned covariance matrix. By making the covariance matrix closer to a diagonal,
shrinkage reduces its condition number. However, shrinkage accomplishes that without dis-
criminating between noise and signal. As a result, shrinkage can further eliminate an already
weak signal. While shrinkage makes the covariance matrix more stable, it treats all sources
of variance the same way, reducing both random noise and signal patterns. This uniform
approach might weaken understated but important signals in the data, which are essential for
making accurate analyses and informed decisions. In practice, choosing the right amount and
type of shrinkage is very important. Consequently, while the Ledoit-Wolf shrinkage method
is a helpful tool for stabilizing covariance matrices, it needs to be applied carefully due to
this limitation and the specific characteristics of the data.

A method to filter out the noisy part of the covariance matrix by identifying and removing
the components associated with the eigenvalues that match the predictions of random matrix
theory (RMT) for purely random data was proposed by Potters et al (2005). RMT has proven
highly effective in analyzing the structure of stock return correlationmatrices. This framework

16 TheMarcenko-Pastur theorem is a fundamental result in RMT that describes the asymptotic behavior of the
eigenvalues of large randomcovariancematrices.Aprobability distribution describing this asymptotic behavior
of the eigenvalues of large random covariance matrices is referred to as the Marcenko-Pastur distribution.
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helps in identifying and distinguishing genuinemarket signals from random noise in financial
data, providing deeper insights into the relationships between different stocks. By applying
RMT, researchers can better understand the complex interactions within financial markets,
leading to improved portfolio optimization strategies. Potters et al (2005) propose analyzing
the eigenvalues of the empirical covariance matrix and identifying the ones that deviate from
the predictions of RMT as containing the true correlation information for data that is purely
random. The eigenvectors that are identified as corresponding to the non-deviating, noisy
eigenvalues predicted by RMT are considered random and are filtered out. After the filtering,
the resulting covariance matrix constructed using the deviating eigenvalues then captures the
true correlations that lead to better performance in applications such as portfolio optimization
compared to the standard empirical covariance matrix.

Building on the ideas of Potters et al (2005), López de Prado (2020) proposes using ML
to fit the function f[λ] to the empirical eigenvalue distribution, which allows deriving an
implied variance (σ2) that the the random eigenvectors present. That is, by fitting f[λ] to the
eigenvalue distribution separates the random and non-random components. This approach
derives the variance that is explained by the random eigenvectors present in the correlation
matrix, and it will determine the cut-off levelλ+, adjusted for the presence of non-random
eigenvectors. Because we know what eigenvalues are associated with noise, we can shrink
only those, without diluting the signal (Fig. 2).

Let {λn}n=1, ..., N be the set of all eigenvalues, ordered descending, and i be the position
of the eigenvalue such that λi > λ+ and λi+1 ≤ λ+. Then we set λ j = 1

N−i

∑N
k=i+1 λk ,

j = i+1, . . . , N , hence preserving the trace of the correlation matrix. Given the eigenvector
decomposition VW = W	, we form the de-noised correlation matrix C1 as

C̃1 = W 	̃W ′
C1 =

(

diag
[

C̃1

])−1/2C̃1

(

diag
[

C̃1

])−1/2

where ˜	 is the diagonal matrix holding the corrected eigenvalues. The reason for the second
transformation is to re-scale the matrix ˜C1, so that the main diagonal of C1 is an array of 1s.

Fig. 2 Fitting the Marcenko-Pastur PDF on a noisy covariance matrix through a Kernel Density Estimator
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Fig. 3 A comparison of eigenvalues before and after applying the residual eigenvalue method

Through Monte Carlo experiments, López de Prado (2020) shows that, applying this
denoising procedure, the maximum Sharpe ratio portfolio incurs only 0.04% of the root
mean square error (RMSE)—a metric employed for assessing the accuracy and performance
of predictive models − incurred by the maximum Sharpe ratio portfolio without de-noising.
That is a 94.44% reduction in RMSE from de-noising alone, compared to a 70.77% reduction
using Ledoit-Wolf shrinkage. While shrinkage is somewhat helpful in the absence of de-
noising, it adds no benefit in combination with de-noising. This is because shrinkage dilutes
noise but also dilutes some of the signal in the process (Fig. 3).

4.2 Input uncertainty

As explained earlier, a major source of Markowitz’s instability is the need to invert a
covariance matrix ̂V that is likely estimated on an insufficient number of observations T .
Consequently, as λ−approaches zero, the determinant of ̂V also approaches zero. When this
occurs, the condition number of the covariance matrix becomes very high, thereby magni-
fying any estimation error on a. To circumvent this problem, some practitioners have opted
for dropping â entirely, giving rise to so-called risk-parity approaches, which essentially
compute the allocations ω̂∗ that assign equal risk to each asset. While dropping â reduces
some of the instability in ω̂∗, the issue remains that risk parity requires the inversion of an
ill-conditioned matrix ̂V .

To address this flaw of risk parity, López de Prado (2016) introduced aML-based approach
known as hierarchical risk parity (HRP) to derive risk-parity allocations without the need
to invert ̂V . HRP involves three steps. First, HRP applies a hierarchical clustering to the
estimated covariance ̂V . The purpose of doing so helps in identifying the covariance matrix’s
underlying structure as well as grouping assets that have similar risk profiles together. Sec-
ond, HRP reorders the rows and columns of ̂V , so that the largest values lie along the main
diagonal. This reordering makes it easier to identify clusters that have higher inter-asset cor-
relations. Doing so enhances the effectiveness of risk allocation. Third, HRP splits allocations
through recursive bisection of the reordered covariance matrix. By iteratively splitting the

123



330 Annals of Operations Research (2025) 346:319–340

covariance matrix into smaller subsets, HRP generates risk-parity allocations that reflect the
diversification benefits across different asset classes.

Through Monte Carlo experiments, López de Prado (2016) shows that HRP solutions
exhibit lower out-of-sample variance than the traditional Markowitz’s minimum variance
solutions. Furthermore, Antonov et al (2024) derived analytical values for the noise of allo-
cation weights coming from the estimated covariance and provide empirical support that
HRP is indeed less noisy (and thus more robust) than the traditional Markowitz’s minimum
variance solution, further highlighting its usefulness in portfolio optimization.

A modified HRP method has been proposed by Molyboga (2020). This HRP method
replaces the traditional sample covariance matrix with an exponentially weighted covariance
matrix, incorporating Ledoit-Wolf shrinkage. Doing so, enhances diversification both within
and among clusters through an equal volatility allocation strategy. Moreover, this method
improves temporal diversification by implementing volatility targeting within portfolios.

In a pioneering investigation of risk budgeting (RB), Koumou (2024) proposed an RB
methodology grounded in a filtered similarity matrix derived from hierarchical clustering.
The advantages of this approach, termed Hierarchical Risk Budgeting (HRB), include visu-
alizability, adaptability, and resilience. Leveraging these characteristics, Koumou illustrates
howHRB can be adapted to integrate asset expected returns without imposing additional con-
straints for error estimation management. Empirical tests demonstrate HRB’s improvements
over the original HRP, particularly when accounting for asset return expectations.

A cutting-edge approach combining the Long Short-Term Memory (LSTM) model with
Support Vector Regression (SVR) to gauge investor sentiment for integration into the Black-
–Litterman model17 was proposed by Punyaleadtip et al. (2024). Applying the proposed
method to analyze both the SET Index of the Thai equity market and the Dow Jones Index of
the US equity market, they find support for the method’s effectiveness by consistently outper-
forming traditional buy-and-hold strategies in both stockmarkets. This innovative combining
of LSTM and SVR not only improves the predictive power of sentiment analysis but also
offers valuable insights for portfolio management in dynamic market environments.

Owen (2023) identified portfolios constructed using hierarchical clustering, combined
with a three-month buy-and-hold, long-only strategy, generated higher out-of-sample risk-
adjusted returns compared to those derived from traditional Markowitz portfolio strategies.
Additionally, portfolios constructed using ML techniques exhibited significantly reduced
frequency of portfolio rebalancing, thereby reducing trading costs. This finding demonstrates
the potential benefits of applying ML-based techniques to optimize portfolio and minimize
transaction costs.

Lastly, Menvouta et al. (2023) developed the minCluster portfolio, an innovative method-
ology that combines the optimization of downside risk measures, hierarchical clustering, and
cellwise robustness to identify inherent hierarchical structures within datasets. The minClus-
ter portfolio not only mitigates downside risk through the application of tail risk measures but
also consistently outperforms traditional mean–variance and other hierarchical clustering-
based strategies in both simulated and real data scenarios.

4.3 Signal-induced instability

Another limitation of Markowitz’s mean–variance optimization framework is what López
de Prado (2020) described as “Markowitz’s curse”: Markowitz’s solutions become more

17 For a detailed description of the Black-Litterman model and its offshoots, see Kolm, Ritter, and Simonian
(2021).
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unstable when they are needed the most. To see how, consider a correlation matrix between
two securities,

C =
[

1 ρ

ρ 1

]

where ρ is the correlation between their returns.MatrixC can be diagonalized asCW = W	

as follows, where

W =
[

1√
2

1√
2

1√
2

− 1√
2

]

, 	 =
[

1 + ρ 0
0 1 − ρ

]

The trace of C is tr(C) = 	1,1 + 	2,2 = 2, so ρ sets how big one
eigenvalue gets at the expense of the other. The determinant of C is given by
|C | = 	1,1	2,2 = (1 + ρ)(1 − ρ) = 1 − ρ2. The determinant reaches its maximum at
	1,1 = 	2, 2 = 1, which corresponds to the uncorrelated case, ρ = 0. The determinant
reaches its minimum at 	1,1 = 0 or 	2, 2 = 0, which corresponds to the perfectly correlated

case, |ρ| = 1. The inverse of C is C−1 = W	−1W ′ = 1
|C |

[

1 −ρ

−ρ 1

]

. The implication is

that, the more ρ deviates from zero, the bigger one eigenvalue becomes relative to the other,
causing |C | to approach zero, which makes the values of C−1 explode. This happens regard-
less of the N/T ratio, hence this source of instability is independent from noise (which was
discussed in an earlier section).

Matrix C is just a standardized version of V , and the conclusions we drew on C−1 apply
to the V−1 used to estimate ω∗. When securities within a portfolio are highly correlated
(−1 < ρ 
 0 or 0 
 ρ < 1), C has a high condition number, and the values of V−1

explode. This is problematic in the context of portfolio optimization, because ω∗ depends
on V−1, and unless ρ ≈ 0, we must expect an unstable solution to the convex optimization
program. In other words, Markowitz’s solution is guaranteed to be numerically stable only if
ρ ≈ 0, which is precisely the case when we don’t need it! The reason we needed Markowitz
was to handle the ρ �≈ 0 case, but the more we need Markowitz, the more numerically
unstable is its estimation of ω∗.

To address Markowitz’s curse, López de Prado (2020) proposed a ML-based algorithm
that he called Nested Clustered Optimization (NCO), which utilizes hierarchical cluster-
ing techniques as a basic component of the approach. The NCO algorithm involves five
steps. First, the correlation matrix is de-noised and clustered for the purpose of identifying
relationships and patterns. Second, the NCO algorithm computes intra-cluster allocations,
optimizing allocation strategies within each identified cluster. Third, the solutions from the
first two steps are used to reduce the dimensionality of the system, to one row/column per
cluster. Fourth, inter-clustered allocations are computed on the reduced system, optimizing
allocation between clusters. Fifth, the final asset allocation is the dot product of the inter-
cluster and intra-cluster allocations. Monte Carlo experiments show that NCO computes the
maximum Sharpe ratio portfolio with 45.17% of Markowitz’s RMSE (i.e. a 54.83% reduc-
tion in RMSE). The combination of shrinkage and NCO yields an 18.52% reduction in the
RMSE of the maximum Sharpe ratio portfolio, which is better than shrinkage but worse than
NCO. Once again, NCO delivers substantially lower RMSE than Markowitz’s solution, and
shrinkage adds no value. It is easy to test that NCO’s advantage widens for larger portfolios.
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4.4 IID normality

A third limitation of Markowitz’s mean–variance optimization framework lies in its reliance
on the assumption that asset returns are IID as Gaussian. To address this limitation, forward-
looking returns and risk measures can be introduced into the optimization process. Moreover,
incorporating additional statistical moments—such as skewness and kurtosis—allows for a
more comprehensive assessment of the risk associated with extreme price movements.

Pinelis and Ruppert (2022) demonstrate that ML can yield economically and statistically
significant benefits in portfolio allocation between market indices and risk-free assets. The
study implements optimal portfolio rules that adjust to time-varying expected returns and
volatilities using two random forest models. The first model forecasts monthly excess returns
incorporating macroeconomic factors such as payout yields, while the second estimates
prevailing volatilities. The findings underscore the advantages of reward-risk timing via ML,
which surpass traditional buy-and-hold strategies in terms of utility, risk-adjusted returns,
and maximum drawdowns. This research serves as a comprehensive framework for applying
machine learning to both return and volatility timing.

Uysal and Mulvey (2021) explore a ML methodology for regime-based asset allocation.
Their approach includes two main components: (1) regime modeling and prediction and
(2) the formulation of a regime-based strategy to improve risk-parity portfolio performance.
They employ supervised learning algorithms, notably random forest, to predict the likelihood
of recessions or market downturns, using a substantial macroeconomic dataset. Their out-
of-sample validation, spanning from 1973 to 2020, confirms the accuracy of their recession
forecasts in the United States. By integrating these predictions with a dynamic investment
overlay strategy, their approach significantly enhances risk-adjusted returns in both two-asset
and multi-asset portfolios, even amidst the rising interest rates of the late 1970s.

A novel reinforcement learning framework designed for the autonomous and efficient
management of time-dynamic risk budgets is proposed by Han (2023). Marking a signif-
icant departure from traditional risk management strategies, this novel approach leverages
advancedML techniques to adaptively allocate risk across different asset classes.Han demon-
strates that this learning agent not only enhances target performancemeasures but also exhibits
the capability to approximate optimal risk budget deviations through its learned policy. These
findings suggest promising applications for the integration of reinforcement learning in port-
folio management, potentially revolutionizing the way risk is managed and allocated in
dynamic market environments.

Bosancic et al (2024) developed a novel approach for selecting features within a regime-
aware portfolio model. Their work focuses on six Fama–French equity factors. Two regimes
are proposed: growth and crash for each factor. The algorithm labels regimes over a 20-
year rolling-horizon training window by applying the continuous statistical jump model. The
optimal features are selected every six months during the testing period from January 1990
to December 2023. The empirical results provide evidence of the ability to protect drawdown
during crash episodes and thereby maximize Sharpe ratios and other statistics. The positive
results occur for both individual factors and a portfolio of factors.

4.5 Single-period (myopic) optimization

A fourth limitation of Markowitz’s mean–variance optimization framework lies in its design
as a single-period model, which contrasts sharply with the multi-period investment horizons
typical of most investors. This limitation of the model significantly impacts the model’s
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applicability to real-world scenarios, where investment decisions and market conditions
evolve over time. ML offers a promising solution for addressing this limitation. It does
so by facilitating a dynamic, multi-period approach to portfolio optimization. ML algorithms
can continuously update the inputs for the portfolio optimization process—such as expected
returns, variances, and covariances—based on recent market data and trends. By providing
this flexibility for including new information as it becomes available, it allows portfolio
managers to rebalance their asset allocation or current portfolio to adapt more effectively to
changing market conditions.

Rosenberg et al. (2016) address a multi-period portfolio optimization challenge using the
quantum annealer from D-Wave Systems− a type of quantum computing device designed to
solve optimization problems.18 They develop a problem formulation, explore various integer
encoding schemes, and provide numerical examples that highlight high success rates. Their
approach notably avoids the need for covariance matrix inversion and includes transaction
costs, encompassing both permanent and temporary market impacts. The discrete multi-
period portfolio optimization problem tackled is highlighted as significantly more complex
than its continuous variable counterpart.

In ML, a hyperparameter is a parameter whose value is set prior to the learning process
begins. Unlike model parameters, which are learned from the training data during the training
process, hyperparameters are not directly learned from the data. Instead, a hyperparameter
is either specified by the modeler or selected via some search process. The hyperparameters
can have a significant impact on the performance and behavior of a ML model because they
control aspects of the model’s architecture − complexity, regularization, and optimization
strategy.19 For achieving good performance and generalization in ML models, selecting the
appropriate hyperparameter values is critical.

Typically, selecting hyperparameters involves experimentation and tuning through various
methods. Such methods include grid search, random search, or more sophisticated optimiza-
tion techniques like Bayesian optimization. A systematic methodology for hyperparameter
optimization by integrating recent developments in automated ML and multi-objective
optimization is proposed by Nystrup et al. (2020). Their approach focuses on optimizing
hyperparameters within a training set to achieve optimal outcomes, constrained by market-
determined realized costs. In their application to both single- and multiperiod portfolio
selection, sequential hyperparameter optimization demonstrates superior risk-return trade-
offs compared to traditional methods such as manual, grid, and random hyperparameter
searches, while requiring fewer function evaluations. Notably, the solutions generated exhibit
greater stability from in-sample training to out-of-sample testing, indicating a reduced like-
lihood of solutions that perform well in training by chance.

Abdelhakmi and Lim (2024) explore a multi-period generalization in which the time
horizons of expert views do not align with those of a dynamically-trading investor. Utilizing
an underlying graphical structure that links asset prices and expert views, they derive the
conditional distribution of asset returns under a geometric Brownian motion price process.
Additionally, they demonstrate that this distribution can be expressed via amulti-dimensional
Brownian bridge. They introduce a new price process modeled as an affine factor model,
where the conditional log-price process functions as a vector of factors. The authors provide an

18 Quantum annealers, such as those developed by D-Wave Systems, use quantum bits to represent the
variables in the optimization problem so as to more efficiently solve for certain classes of problems than
classical computers.
19 Examples of hyperparameters include the learning rate, the number of hidden layers and units in a neural
network, the selection of the kernel in a support vector machine, and the depth and size of decision trees in a
random forest algorithm.
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explicit formula for the optimal dynamic investment policy and examine the hedging demand
prompted by the introduction of a new covariate. More broadly, the study illustrates that
Bayesian graphical models offer an effective framework for integrating complex information
structures into the Black-Litterman model.

5 Stress testing

Stress testing a portfolio involves simulating the portfolio’s performance under extreme
market conditions with the goal of identifying the portfolio’s potential vulnerabilities. Econo-
metrics models have long-been used to define scenarios (or regimes) for stress testing based
on historical return data and economic and financial market conditions. However, it is well-
known that econometric models are limited in their ability to capture nonlinear relationships
and detect anomalies from the data for generating and, as a result, failing to provide realistic
scenarios for stress testing.

ML algorithms, such as the various clustering approaches that are available, can be used to
detect extreme/anomalous events that aremoremeaningful than those identified by traditional
econometric models. Clusteringmethods include k-means clustering, hierarchical clustering,
Gaussianmixturemodels (GMMs), density-based spatial clustering of applicationswith noise
(DBSCAN), and spectral clustering. Enhanced byML techniques such as these, Monte Carlo
simulation can then employ historical data to optimize the simulations by improving their
computational efficiency and generating more realistic scenarios.

Let us discuss in detail how two of theseML clustering techniques, GMMs andDBSCAN,
have been used for portfolio risk management. Consider first GMMs. These models can be
used to create “conditional forecasts” based on the occurrence of certain market conditions,
such as a drastic change in interest rates and foreign-exchange rates, spikes in the price of
oil, or an unexpected change in macroeconomic conditions.

The assumption of GMMs is that the data points are generated from a mixture of multiple
Gaussian distributions. Each distribution is associated with a different underlying market
condition or regime. This feature of GMMs make them particularly appealing for scenario
analyses that correspond to a particular change. Botte andBao (undated), for example, explain
how GMMs are used for portfolio stress testing by Two Sigma, a large hedge fund, by gener-
ating four market conditions (scenarios). Each of the four market conditions is depicted by a
17-dimensional Gaussian distribution, with the distributions varying across the four market
conditions and having unique factor means, volatilities, and correlation structures. GMM
derived market conditions are data-driven and therefore may not directly correspond to con-
ventional market environments. Botte and Bao (n.d.) note the advantages and disadvantages
of this approach. The advantage is that it can identify unexpected insights into market behav-
ior, offering the portfolio manager with information that might not be apparent without the
application of this ML technique. The disadvantage is that it can be challenging to apply to
the market conditions that GMM identifies, making them appear abstract and disconnected
from conventional market analyses.

DBSCAN excels not only in identifying clusters within datasets but also in managing
outliers, which is particularly advantageous in the context of portfolio stress testing. This
capability is crucial for pinpointing assets or securities in a portfolio that exhibit atypical
behavior compared to the majority under specific market conditions. By effectively high-
lighting these outliers, DBSCAN facilitates a more comprehensive approach to stress testing,
allowing portfolio managers to assess extreme risks and unexpected responses to stressful
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market environments. This contributes to a more robust and resilient framework for under-
standing and mitigating potential vulnerabilities within the portfolio.

We note that it is also possible to combine approaches when building stress testing frame-
works. For example, Simonian (2022) combines the random cut forest (Guha et al., 2016)
and random forest algorithms, to build a model that classified and predicts large near-term
stress episodes and drawdowns.

6 Natural language processing and generative languagemodels

Natural Language Processing (NLP) algorithms apply ML algorithms to linguistic tasks.
Computational analysis of language includes two main domains: syntactical analysis and
semantical analysis. Syntactical analysis is used to determine the grammatical structure of
a phrase or sentence by parsing the syntax of the words using a formal lexicon and set of
grammatical rules. Semantical analysis tries to determine the meaning of words and interpret
words within a particular sentence and phrase structures.

The basic approaches to NLP include rules-based NLP algorithms and ML-based algo-
rithms.20

Rules-basedNLPalgorithmswere the earliestNLPapplications andutilized simple if–then
decision trees, with preprogrammed rules for answering specific and limited sets of ques-
tions. One type of ML-based algorithm is statistical NLP which uses both supervised and
unsupervised ML algorithms to automatically extract, classify, and label the elements of a
piece of textual data, and then assigns a probability value to each possible meaning of the
data being analyzed. Sentiment analysis, for example, primarily utilizes supervised learning.
Deep learning NLP algorithms, however, have by now become the leading frameworks for
conducting NLP as they can process an immense amount of unstructured data and provide
output with a high degree of precision.

One branch of NLP is concerned with building generative language models (GLMs),21

like GPT (Generative Pre-trained Transformer). These models can process large amounts of
unstructured data from various sources such as regulatory filings, analyst reports, earnings
call transcripts, and social media. By analyzing the sentiment expressed in these sources and
converting them into sentiment scores, GLMs can gauge the market sentiment towards the
overall financial market or specific asset classes and sectors. Positive sentiments can indicate
bullish conditions, whereas negative sentiments might suggest bearish market conditions.
Portfolio managers can use these insights to manually adjust their asset allocations accord-
ingly or integrate sentiment scores into a quantitative model. As an example of the latter, a
quantile-based trading strategy can utilize sentiment scores to create long-short equity port-
folios. Scores can be used to rank stocks and then select the stocks in the top quantile to
purchase and the stocks in the bottom quantile to sell short.

Another application of GLMs that is useful for portfolio managers in adjusting their
exposure to an individual security is detecting material events. An occurrence of something
that has resulted at a certain time and in a certain place that is associated with one or more
participants is referred to as an event. Event extraction refers to the process of detecting one or
more events in a text. There are events in financial markets that can move the price of a single
security or the market overall. Examples include the announcement of a new product, the
signing of a major sales agreement, and the signing of a labor agreement. This information is

20 For a further discussion of the topics mentioned in this section, see FA Fabozzi (2024).
21 GLMs are discussed in detail in FA Fabozzi (2024).

123



336 Annals of Operations Research (2025) 346:319–340

transmitted to themarket via text or a company spokesperson announcement.Marinov (2019)
provides a real-world example of six identified events that resulted in a major movement in
Tesla’s stock price. By continuously monitoring and processing news feeds and other text
sources, thesemodels can alert portfoliomanagers about events that require immediate action
or consideration, thus potentially enhancing portfolio performance.

Finally, GLMs can be used to create simulated market scenarios for training other ML
models. These scenarios can significantly improve the training and robustness of ML used
in portfolio management and other financial decision-making processes, allowing for a more
dynamic and responsive adaptation to evolving market conditions.

7 Challenges

Despite the increased use of ML techniques in portfolio construction, implementation can at
times be challenging. Admittedly, some of these challenges apply equally to traditional port-
folio construction methods such as mean–variance portfolio optimization and its extensions.
For example, data are the key to both traditional and ML models. Data are prone to errors,
can be costly in the case of ML, and can be difficult to access.

Overfitting remains a significant challenge in developing reliable and effective ML-based
portfolio strategies that are designed to perform well across diverse market conditions and
over time. In the realm of ML, overfitting often arises from incorporating too many features,
overly extensive training on the data, the intensive training of the model itself, and usage of
the test set multiple times (see Bailey et al., 2014, for a discussion). These practices lead
to models that perform well with training data but perform poorly when applied to new,
out-of-sample data. When this occurs, it makes ML tools less effective for constructing port-
folios expected to perform robustly in real-world market conditions. Despite the availability
of techniques like data splitting, regularization, and cross-validation to mitigate overfit-
ting, tackling the overfitting issue effectively remains a formidable challenge. Traditional
mean–variance models used in portfolio optimization encounter a similar problem. These
models can perform well with historical return data but struggle to generalize effectively to
new data. Essentially, a portfolio optimized using the mean–variance approach might show
excellent performance based on past data but can underperform when faced with future mar-
ket conditions. This problem underscores the broader difficulty in creating models that not
only fit past data well but also adapt robustly to new, unforeseen market scenarios.

Scaling ML models for portfolio construction presents several challenges, particularly
as the number of asset classes or new financial instruments in which the portfolio manager
may be permitted to invest increases and the variety and volume of data increase. While
a ML model may perform well with a limited scope of data and simpler decision-making
processes, as the scope of investment decisions broadens to include a wider array of asset
classes or financial instruments, the complexity of the models and the computational load
increase significantly. The scaling challenge is not just a matter of handling larger datasets.
It involves dealing with the increasing complexity of databases and model intricacies such
that it does not compromise the existing model’s accuracy or performance.

Finally, as ML models become more prevalent in financial decision-making, the need
for regulatory frameworks that can address the unique challenges posed by this technol-
ogy grows. Ensuring that these models are fair, transparent, and compliant with existing
financial regulations is crucial to their acceptance and continued use in areas like portfolio
construction. InML-based credit scoringmodels, for example, regulatory bodies like theU.S.
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Consumer Financial Protection Bureau and the European Union’s General Data Protection
Regulation have set guidelines to address fairness, transparency, and the right to explanation
of automated decision-making processes. As ML increasingly becomes integral to portfo-
lio management, securities regulators globally are likely to take a closer look at how these
technologies are implemented, drawing parallels to their oversight of ML in credit decision-
making, requiring asset management firms to (1) clearly explain the choices made by their
algorithms, especially when these decisions affect client investments and returns, (2) allow
regulators to inspect and verify the model’s compliance with industry standards and legal
requirements, and (3) implement stress testing periodically to ensure that models can handle
extreme market conditions without causing undue risk to investors.
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